Modes of active intraplate deformation, Flinders Ranges, Australia

Julien Célériér,1 Mike Sandiford, David Lundbek Hansen,2 and Mark Quigley
School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Received 14 May 2004; revised 12 July 2005; accepted 5 August 2005; published 17 November 2005.

[1] The Flinders Ranges form one of the most seismically active zones within the Australian continent with seismogenic strain rates over the last 30 years of $\sim 10^{-16}$ s$^{-1}$. Active deformation in the region reflects late Neogene increases in stress levels in the Indo-Australian plate as a response to increased plate boundary forcing from collision zones with the neighboring Asian and Pacific plates. Geological and geophysical observations suggest two modes of active deformation in operation in the Flinders Ranges over the last several million years: (1) low-amplitude ($\sim 200–500$ m), long-wavelength (~ 200 km) lithospheric flexure and (2) active reverse faulting along the range front with fault slip rates of up to ~ 50 m Myr$^{-1}$. Numerical models are developed to explore the contribution of each of these deformation modes to the observed geophysical signals. An elastic mode of deformation is suggested by a distinctive long-wavelength positive correlation between gravity and topography in which the Flinders Ranges are bordered by anomalous topographic and gravity lows, now occupied by playa-lake systems, centered some 50 km outboard of range-bounding faults. Numerical models show that flexural instabilities localized by vertical loads arising from older tectonic structuring produce a first-order match with observed topography and gravity. Numerical models are also used to illustrate how the localized failure evident in the contemporary seismicity and Quaternary faulting record within the Flinders Ranges reflects thermal weakening associated with extraordinary concentrations of heat producing elements in the crust, as reflected in modern-day heat flows of ~ 90 mW m$^{-2}$. Citation: Célériér, J., M. Sandiford, D. L. Hansen, and M. Quigley (2005), Modes of active intraplate deformation, Flinders Ranges, Australia, Tectonics, 24, TC6006, doi:10.1029/2004TC001679.

1. Introduction

[2] Maps of global seismicity reveal that intraplate earthquakes account for only $\sim 5\%$ of the global seismic moment release, with $\sim 0.5\%$ of the global moment release occurring in so-called stable continental regions (SCRs). However, the often-localized nature of intraplate seismic activity, results in significant seismic moment release in some regions of stable continental regions. For example, in Australia (Figure 1), where the average seismogenic strain rate is less than $\sim 10^{-15}$ s$^{-1}$ [Johnston, 1994a], the most active regions are characterized by seismogenic strain rates of $\sim 10^{-16}$ s$^{-1}$ (Figure 2) [Sandiford et al., 2003].

[3] The factors that localize intraplate seismicity have been the subject of considerable debate, with much of the focus on the role of reactivation of zones of prior deformation [Sykes, 1978]. Numerous paradigms which aim to further refine Sykes’ (1978) reactivation hypothesis have been proposed [Costain et al., 1987; Johnston and Kanter, 1990; Sykes, 1978; Wesnousky, 1980], yet little consensus has emerged as to the more specific causes acting to localize and trigger such activity, nor whether ongoing seismicity is associated with other modes of lithospheric deformation. Much of the research on intraplate seismicity in SCRs has focused on the New Madrid Seismic Zone (NMSZ) in the central United States. This region was the site of a sequence of powerful earthquakes in the winter of 1811–1812, for which moment magnitudes of up to $M = 8.1$ have been estimated [Johnston and Schweig, 1996], making them the largest recorded in any intraplate setting. Since the early 1800s the region has continued to be seismically active. Network monitoring in the region began in 1974, and as of that time, 3000 NMSZ earthquakes have been recorded, none of which have reached moment magnitude release of $M \geq 5$ [Herrmann and Canas, 1978]. The New Madrid Seismic Zone is hosted within a Late Proterozoic to Early Cambrian failed rift, the Reelfoot rift [Ervin and McGinnis, 1975], implying crustal structuring probably plays a crucial role in localizing contemporary seismicity.

[4] For a continent located within a plate interior, Australia shows a surprising level of earthquake activity (Figure 1). Some 7000 earthquakes were recorded in the southeastern portion of Australia in the interval 1958–1999 [Spassov and Kennett, 2000]. The most notable of these being the Richter magnitude ($M_L = 5.6$) Newcastle earthquake in December 1989, the first since European settlement in which lives were lost. As is observed in other SCRs, seismicity within the Australian continent tends to be a highly localized phenomenon. One of the most active zones is within the Flinders Ranges of South Australia (Figure 3) where the record of neotectonic activity is also particularly well developed [Sandiford, 2003]. The relatively high earthquake activity in the Flinders Ranges, combined with the youthful nature of the topography, attest to the role that mild tectonism is playing in shaping the current landscape.
Using field based observations and numerical models, this paper seeks (1) to compare geologically determined fault slip rates with historical seismic moment release rates, (2) to investigate the factors that localize seismic activity in the region, and (3) to explore the modes of lithospheric deformation that contribute to the geological and geophysical assemblage of the region.

2. Seismicity, Strain, and Stress in South Australia

2.1. Historical and Instrumental Seismicity

In the last 150 years, 15 earthquakes of magnitude 5 or greater have been recorded in South Australia, with between 300 and 400 earthquakes instrumentally recorded each year in the state [Greenhalgh et al., 1994]. The largest instrumentally recorded earthquake in the Flinders Ranges is $M_s \sim 6$, while in southeastern Australia the largest recorded earthquake is $M_s \sim 6.4$. Elsewhere in Australia, $M_s > 6.5$ quakes have occurred at a number of widely distributed localities, with the largest earthquake of magnitude $M_s = 6.8$ (in 1941, near Meeberrie in Western Australia). Most of the contemporary seismicity in South Australia occurs in the Flinders and Mount Lofty Ranges, as well as to a lesser extent along the eastern part of the Eyre Peninsula (Figure 3).

Seismic monitoring in Australia is sufficient for a more or less complete record down to local magnitude (M_L) 3.5 since 1970 [Gaul et al., 1990], allowing estimation of Gutenberg-Richter statistics [Gutenberg and Richter, 1944] for earthquake activity rate across the continent (Figure 2). Following Johnston [1996], we use the a and b values derived from the Gutenberg-Richter statistics to obtain the seismic moment release rate, M_0:

$$M_0 \approx \frac{1}{10^{(a+b)}} \left(\frac{10^{(c+b)}}{c-b} \right) \left(10^{(c-b)} M_{\text{max}} \right)$$

Figure 1. Distribution of Australian seismicity ($M > 3$). Earthquake epicenter data are courtesy of Geoscience Australia. Magnitude measures are based on local magnitudes (M_L) for $M < 5.5$ and surface magnitude (M_s) for $M > 5.5$. See color version of this figure at back of this issue.
where \(t \) is the time span of the seismic record, \(M_{\text{max}} \) is the maximum expected magnitude for earthquakes in the region of interest, and \(c \) and \(d \) are factors that relate to the conversion of magnitude scale to seismic moment [Hanks and Kanamori, 1979]:

\[
\log(M_0) = cM + d
\]

In turn, the seismic moment release rate can be used to derive a seismic strain rate [Kostrov, 1974]

\[
\dot{\varepsilon}_s = \frac{1}{2\mu v} M_0
\]

where \(\mu \) is the Young’s modulus (assumed here to be \(8 \times 10^{10} \) N m\(^{-2}\)) and \(v \) is the volume of crust in which the seismicity occurs. We assume that the seismogenic zone is 15 km thick, on the basis of the knowledge that the great majority of Australian earthquakes have epicentral depths less than \(\sim 10 \) km [Gaul et al., 1990].

In making these calculations we note that uncertainties in the \(a \) and \(b \) values, \(M_{\text{max}} \), the thickness of the seismogenic zone and the Young’s modulus necessarily result in very large uncertainties in estimates of seismic strain rate. Moreover, our poor knowledge of seismic efficiency (i.e., the relative accommodation of strain by seismic and aseismic mechanisms), imply further uncertainty in translating seismically determined strain rates to bulk crustal strain rates [e.g., Johnston, 1994b]. Nevertheless, these calculations provide an indication of the sorts of fault slip to be expected if the present-day seismicity is indicative of longer-term geological strain rates.

Since the majority of the moment is carried by the largest, most infrequent, earthquakes, the main uncertainty in the calculation of the seismic strain rates is the value of \(M_{\text{max}} \) (Figure 2). For intraplate regions such as Australia with an historical record of only 200 years, it is extremely improbable that this record encompasses an earthquake of magnitude \(M_{\text{max}} \). The historical limit therefore provides a lower bound on \(M_{\text{max}} \). On longer timescales we would expect somewhat larger earthquakes than those instrumentally recorded, and thus the maximum earthquake expected on geological timescales could conceivably be \(M > 7 \). Assuming \(M_{\text{max}} = 7.0 \), the seismic strain rate for the most active region of the Flinders Ranges is \(\sim 10^{-16} \) s\(^{-1}\) (Figure 2b, see boxed area in Figure 3 for region limits), while the regional background deformation rate, defined in terms of the seismicity of the whole continent, is \(\sim 10^{-17} \) s\(^{-1}\) (Figure 2a). For example, assuming that the neotectonic deformation record of reverse faulting (see section 3.3) is indicative of essentially uniaxial E-W compression, then a seismic strain rate of \(\sim 10^{-16} \) s\(^{-1}\) would equate to a shortening rate of several hundred meters per million years across the Flinders Ranges (or \(\sim 30\% \) of the total Australian seismic strain). Such a deformation rate could be accounted for an ensemble of 5–10 faults each slipping at \(\sim 20–50 \) m Myr\(^{-1}\).

In section 3.3 we outline observations of several range bounding faults that have Quaternary slip rates of this order.

2.2. In Situ Stress Field

The Indo-Australian plate, along with the North American and South American plates, form a group of fast moving continental plates, where the stress fields within the continents is largely “compressional” [Minster and Jordan, 1978]. Cloetingh and Wortel [1986], Richardson [1987], Coblenz et al. [1995, 1998] and Reynolds et al. [2002] have shown that unlike midplate North America and Western Europe, \(S_{\text{Hmax}} \) in the Australian plate is not aligned parallel.
Figure 3. Seismicity pattern of South Australia showing the updland system of the Flinders and Mount Lofty ranges. The Mount Lofty Ranges refer to the southern part of this updland system (south of 34°S), while the Flinders Ranges refer to region north of about 33°30S. Note the anomalously low depressions flanking the ranges (see Figure 4). Around the Flinders Ranges these depressions form internally draining playa lake systems. Earthquake epicenter data are courtesy of Geoscience Australia. Rectangular region shows large depressions flanking the ranges (see Figure 4). Around the Flinders Ranges these depressions form internally draining playa lake systems. Rectangular region shows large depressions flanking the ranges (see Figure 4).

3. Geological Geophysical Framework

3.1. Geological Setting

In the Flinders Ranges, earthquake focal mechanisms show considerable variation in the in situ stress field. Within the northern Flinders Ranges alone, both thrust and strike-slip focal mechanisms are reported, with inferred shortening directions varying between ~020° and ~120°. Hillis et al. [1998] attribute this heterogeneity to low horizontal force anisotropy and argue that despite considerable variation in the stress field, there appears to be a poorly defined E-W $S_{H_{\text{max}}}$. In contrast, using a formal inversion of four focal mechanisms, Clark and Leonard [2003] have derived a $S_{H_{\text{max}}}$ azimuth of N82°E in a purely strike-slip stress regime, and argue that there is significant horizontal force anisotropy.

Sandiford et al. [2004] have related the E-W to SE-NW $S_{H_{\text{max}}}$ trends in southeast Australia to late Neogene changes in the coupling of the Pacific and Australian plates in the late Neogene. Sandiford et al. [2004] show that mild compressional tectonics across southeast Australia, as indicated by the modern seismicity, commenced at between 10 and 6 Ma, coinciding with the building of the Southern Alps in New Zealand.
ward into the eastern Gawler Craton (average heat flow ~85 mW m⁻²) and eastward into the Curnamona Craton (average heat flow ~75 mW m⁻²), values which are typical of much of the Australian Proterozoic crust [Cull, 1982; Houseman et al., 1989] and differ from the much lower heat flows of the western Gawler Craton and Archean cratons of Western Australia where heat flows typically lie in the range 35–55 mW m⁻² [Cull, 1982]. Neumann et al. [2000] and McLaren et al. [2003] show that the high heat flows in the Australian Proterozoic are invariably associated with anomalous heat production in the near surface crust.

Deposited on top of this crystalline basement is a 5–10 km thick Neoproterozoic sedimentary sequence [Paul et al., 1999], understood to have accumulated during an episode of major continental rifting [Preiss, 1987]. Sedimentation ceased toward the end of the Cambrian (~520 Ma) with the initiation of a succession of inversion events, associated with the Delamerian Orogeny [Thomson, 1969] and the onset of plate convergence along the paleo-Pacific margin. In the Flinders Ranges, both the basement and cover sequences were deformed, with total shortening no more than ~15% [Paul et al., 1999].

Following the Delamerian Orogeny a period of tectonic quiescence ensued with mild thermal perturbations attributed to the late Paleozoic Alice Springs Orogeny [Gibson and Stowe, 2000; McLaren et al., 2002]. During the Mesozoic the region was reduced to a peneplain, after which episodes of fluvial to lacustrine deposition occurred in the Cretaceous, Eocene and Miocene. Intermittent sedimentation in the mid-late Neogene is reflected in low-energy fluvialite and lacustrine sediments of the Namba Formation. On the pediments flanking the northern Flinders Ranges, the Namba Formation is overlain by Pliocene to Quaternary gravels and fluvial facies of the Willawortina and Pooraka formations, indicative of rising topography [Callen, 1974].

3.2. Origin of Relief

The origin of the present-day relief of the Flinders Ranges has been the subject of varied opinion. The general lack of recognition of significant young tectonic activity (see discussion in section 3.3) has led most workers to the view that the topography is ancient, extending back at least to the early Cenozoic [Vevers and Conaghan, 1984]. In the northern Flinders Ranges, several convincing lines of evidence point to the present-day topography being post-Mesozoic. First, distinctive summit surfaces locally overlain by Cretaceous fluvial sequences imply the present-day relief has been generated since the Mesozoic. Second, range-bounding alluvial fan sequences (Willawortina Formation) seem to have developed only in the late Neogene [Belperio, 1995] with older late Miocene sequences (Namba Formation) reflecting low-energy fluvialite and lacustrine sediments of the Namba Formation. Callen and Tedford [1976] argued that the transition from low-energy sediments of the Namba Formation to the alluvial fans of the Willawortina Formation in the late Miocene or Pliocene reflects the initiation of uplift of the Flinders Ranges. In recent times, this notion of youthful tectonic activity building the relief of the upland system has been further developed by Sandiford [2003], who has suggested as much as half of the present-day relief of the Mount Lofty Ranges is associated with late Neogene reverse faulting, with Quaternary slip at rates locally as high as 50 m Myr⁻¹.

An important aspect of the regional relief relates to basement structure beneath range flanking pediments that bound the Flinders Ranges. These pediments are developed on both exposed basement and thin alluvial fan sequences. Characteristically, the unconformity between the alluvial fan sequences and underlying basement (Figure 5a), dips gently away from the ranges, implying that the long-wavelength surface topography mimics the topography on the basement.
faulting within the Flinders and Mount Lofty Ranges
workers have noted evidence for range-bounding Quaternary
playa lake.

toward the a topographic minimum located at the site of the
range bounding faults invariably dips away from the range
alluvium interface beneath pediments in the footwall of
systems resembles Figure 5b in as much as the basement-
structure of the Flinders Ranges and surrounding playa lake
structure of a range flank bounded by reverse faults. The
ranges. (a) Manner
Paralana escarpment and schematic interpretation of the
in which the Mesoproterozoic basement slopes away from
surface (Figure 5b), rather than the architecture of flexurally
controlled, footwall basins (Figure 5c). This observation has
important ramifications for understanding the various
modes of active deformation in this region (see section 4).

3.3. Neotectonic Record

Although not widely acknowledged, a number of
workers have noted evidence for range-bounding Quaternary
faulting within the Flinders and Mount Lofty Ranges
Sprigg, 1946; Williams, 1973]. Below we briefly describe
a few localities that evidence this activity, including
previously undocumented localities from the Paralana
escarpment in the northern Flinders Ranges and the Burra
region in the southern Flinders Ranges (Figure 6, locations
as shown on Figure 3).

[21] Along the Paralana escarpment, numerous outcrops attest to active reverse faulting. The most spectacular site, some 4 km northeast of the Paralana Hot Springs near the town of Arkaroola, exposes a thrust slice of Neoproterozoic quartzite above a footwall comprising tilled, angular fan conglomerates of the Pliocene Willawortina Formation underlying a 6 m long wedge of much younger (?late Quaternary) talus that can be traced upward into the active hill scree. The thrust plane dips at 25° to the west, beneath the main topographic edifice of the northern Flinders Ranges. In the alluvial fans outboard of the escarpment the Pliocene Willawortina Formation is up to ~150 m thick [Callen and Tedford, 1976], implying in excess of 150 m of post early Pliocene motion on the fault.

[22] In another locality, along the western flank of the ranges in the Wilkatana region, Williams [1973] has documented a northwest striking (~330°, dips 46°NE) reverse fault at the apex of the North Wilkatana fan, that places Neoproterozoic Emeroo Quartzite over loosely consolidated talus breccias and river gravels (Figure 6c). The footwall deposits form part of the Late Quaternary Pooraka Formation. An optically stimulated luminescence (OSL) age of 61,000 ± 11,000 years has been obtained from the correlative Pooraka Formation downstream of the fault [Quigley et al., 2005]. Calcareous gouge from the fault plane yielded a radiocarbon date of 23,450 ± 550 years B.P. [Williams, 1973], broadly constraining the last faulting event to the ~60–23 ka interval. Steeply southeast plunging lineations on the fault plane indicate reverse-oblique approximately ESE-WNW directed contraction with a measured dip-slip separation of ≥12.0 m and an inferred slip of at least 25.6 m. Geometric analysis of the fault plane in the context of the age data translates to time averaged slip rates of at least 200 m Myr⁻¹ and possibly as much as ~400 m Myr⁻¹, although the relative youth of the latest movement suggests that such averaging is inappropriate. A more conservative slip rate of 22–25 m Myr⁻¹, based on the assumption that the footwall fan sequences began accumulating in the early Pliocene is probably more appropriate.

[23] The Burra Fault (Figure 6d) is located several kilometers outboard of the eastern flank of the southern Flinders Ranges. It is exposed at the base of a ~8 m deep erosion canyon incised into range-bounding alluvial fan sequences. The fault comprises a hanging wall of Neoproterozoic Appila Tillite thrust to the northeast over moderately consolidated sediments of the Pooraka Formation. The fault strikes ~140° and dips 38° SW. An OSL date of 85 ± 11 ka has been obtained from the overlying Pooraka Formation, providing a minimum age for the last offset. Regional correlations suggest the footwall Pooraka Formation is likely to be in the age range 90–120 ka, with the slip of ~2.3 m since deposition of that unit translating to a maximum slip rate of ~20 m Myr⁻¹.

[24] We note that the range-bounding faults both within the Flinders Ranges described above, as well as those farther south in the Mount Lofty Ranges (Figure 6c), are clearly reverse while focal mechanisms are dominated by strike-slip mechanisms with just a few reverse mechanisms [e.g., Clark and Leonard, 2003]. This is suggestive of a
topographic partitioning of deformation, with range-bound-
ing faults associated with the largest topographic gradients
dominantly reverse, and faults in the interior of the ranges
dominantly strike slip. So far, no Quaternary strike-slip
faults have been recognized, possibly because without clear
vertical offsets of young sediments such faults would not be
easily distinguished from older Delamerian structures.

As first noted by Sandiford [2003], one of the most
important aspects of this recognition of neotectonic fault
movement in the Flinders Ranges is that it provides a
geological context for understanding the modern seismicity
in this region as well as elsewhere in southeast Australia
[Sandiford et al., 2004]. At least to first order, the neo-
tectonic slip rates inferred for these faults accord with
the estimates of the seismic strain rate detailed in section
2.1 suggesting that despite the inherent uncertainties, useful
estimates of seismic strain obtained by summation of
seismic moment release may be made in more active parts
of SCRs.

3.4. South Australian Gravity Field

As with the gravity fields from many continental
regions, the South Australian gravity field displays a com-
plex pattern with somewhat noisy signals. As noted by
Wellman and Greenhalgh [1988], the Flinders and Mount
Lofty Ranges and surrounding basins are characterized by a
series of subparallel Bouguer anomalies roughly aligned
with the topography (Figure 7). The axis of the central and
northern Flinders Ranges is coincident with a generally
positive, though disrupted, Bouguer gravity anomaly of
amplitude ~20 mGal. Within the ranges a set of distinctive
linear gravity lows correlate with narrow, anomalously thick
Neoproterozoic successions, related to the original rift
geometry. For example, the NW trending gravity low of
amplitude 20 mGal in the northwestern part of the ranges
(north of 31°S) relates to a graben of Burra group sediments
[Paul et al., 1999]. Similarly, the gravity low along the western range front between the
central and southern Flinders Ranges (between 32° and
34°S) can be related to a narrow depocenter developed
during the Sturtian glacial interval [Preiss, 1987].

As shown most clearly in Figure 4b, a broad gravity
low (amplitude ~20 mGal) occurs to the east of the northern
Flinders Ranges in the vicinity of Lake Frome. Equally,
on the western side of the ranges an elongate gravity low
(~15 mGal) extends from Lake Torrens south to the western
range flank of the ranges in the vicinity of Wilkatana, thus
defining a sinusoidal gravity pattern across the axis of the
ranges and flanking playa lake systems.

The first-order positive correlation between topogra-
phy and Bouguer gravity anomalies over the axis of the
ranges and flanking basins (Figure 4), particularly in the
northern Flinders Ranges, is intriguing, since this not what
is expected for crustal deformation, where isostatic com-
ensation is common. While this may simply may reflect
the fact that the isostatic Bouguer anomaly is lost
in inherited noise, it does raise the possibility that the
Flinders Ranges forms part of a much longer wavelength

Figure 6. (a) Highly simplified geological map of the Flinders and Mount Lofty ranges region with
insets showing sketches of exposures of range bounding thrust faults from (b) Paralana, (c) Wilkatana,
and (d) Burra.
the amount of heat sources in the mid to upper crust and the continental conductive thermal regimes is the fact that both the Neoproterozoic cover sequence (north of about 33°30’S), coincides with a weak positive Bouguer gravity anomaly. Brighter colors represent positive Bouguer gravity signal, while darker colors represent regions of negative Bouguer gravity anomaly.

The pattern of seismicity shown in Figure 3, together with the existence of range-bounding Quaternary thrust faults, clearly highlights the relatively intense nature of active deformation in the Flinders Ranges, raising the question of what factors contribute to the focusing of this activity? As outlined earlier, previous work has shown that the elevated heat flow in the vicinity of the Flinders Ranges can be attributed to exceptional heat production in the Neoproterozoic basement that must be more deeply buried in the crust beneath the Flinders Ranges by virtue of the Neoproterozoic cover sequence (Δh ≈ 5 km). For the Flinders Ranges the reference value, q′, is given by the crustal contributions to heat flow in the adjacent regions and is estimated to be ~40 mW m⁻². The reference value, h', is not directly constrained by available measurements but we use a value of 5 km which implies a very shallow concentration of heat production, consistent with the relatively high values of surface heat production observed throughout the region [Neumann et al., 2000]. Assuming a thermal conductivity of 3 W m⁻¹ K⁻¹, these values yield ΔTz = ~90–120°C implying a significantly hotter upper mantle beneath the Flinders Ranges than the adjacent areas where heat flow is lower and heat sources must be shallower.

Figure 7. South Australian Bouguer gravity field. Dashed line shows the topographic axis of the ranges, and for the Flinders Ranges (north of about 33°30’S), coincides with a weak positive Bouguer gravity anomaly. Brighter colors represent positive Bouguer gravity signal, while darker colors represent regions of negative Bouguer gravity anomaly.

4. Modes of Deformation

4.1. Controls on Localized Lithospheric Failure

A fundamental but not widely appreciated aspect of continental conductive thermal regimes is the fact that both the amount of heat sources in the mid to upper crust and the way they are distributed with depth impacts on the thermal structure of the deeper crust and upper mantle. As shown by Sandiford and McLaren [2002] a very simple parameterization illustrates this effect: the temperature at any depth z contributed by heat production above is

$$ T_z = \frac{q_c h}{k} $$

where h is a measure of the effective depth of the overlying heat production, q_c is the vertically integrated abundance of that heat production and k is the characteristic thermal conductivity. Thus the change in the conductive temperature at any depth z due to changes in the distribution of overlying heat production parameters, h and q_c, is just

$$ \Delta T_z = \frac{q_c' h}{k} + \frac{\Delta q_c h'}{k} $$

where q_c' and h' are reference values.

Thus there are two potential sources of elevated temperatures in the deep crust and upper mantle beneath the Flinders Ranges: (1) the additional heat sources in the crust responsible for the heat flow anomaly (Δq_c ~ 15–30 mW m⁻²) and (2) the relatively deeper burial of these heat source beneath the Flinders Ranges by virtue of the Neoproterozoic cover sequence (Δh ~ 5 km). For the Flinders Ranges the reference value, q′, is given by the crustal contributions to heat flow in the adjacent regions and is estimated to be ~40 mW m⁻². The reference value, h', is not directly constrained by available measurements but we use a value of 5 km which implies a very shallow concentration of heat production, consistent with the relatively high values of surface heat production observed throughout the region [Neumann et al., 2000]. Assuming a thermal conductivity of 3 W m⁻¹ K⁻¹, these values yield ΔTz = ~90–120°C implying a significantly hotter upper mantle beneath the Flinders Ranges than the adjacent areas where heat flow is lower and heat sources must be shallower.
Figure 8. (a) The h-q_c plane contoured for integrated lithospheric compressional strength. (b) The h-q_c plane contoured for rate of deformation subject to an imposed compressional tectonic load adapted from Sandiford and McLaren [2002]. The assumed rheology is that of the Brace-Goetze lithosphere in which deformation is governed by a combination of frictional sliding and temperature-dependent creep. The strength parameters are shown normalized against a configuration characterized by $q_c = 45$ mW m$^{-2}$ and $h = 7$ km (bold lines). The arrowed lines show that a heat flow anomaly of between 15 and 30 mW m$^{-2}$ resulting from heat source buried more deeply in the crust by 5 km (as appropriate for the Flinders Ranges) leads to a reduction in bulk strength by a factor of ~ 5 (Figure 8a) and an increase in strain rates subject to an imposed load of more than 2 orders of magnitude (Figure 8b). Note that the effective depth of the heat production, h, outside the heat flow anomaly is not well constrained (as indicated by the shaded region), but this uncertainty does not translate to significant variations in the calculated strength differences associated with the Flinders Ranges heat flow anomaly. Further, while the absolute values of strength are sensitive to a large number of assumed parameters including thermal conductivity (here $k = 3$ W m$^{-1}$ K$^{-1}$) and mantle heat flux (here $q_m = 30$ mW m$^{-2}$), as well as the material parameters constraining creep and frictional sliding of crustal and mantle rocks, the relative strength variations due to changes in h-q_c parameters are relatively robust.

Figure 9 shows that a heat flow anomaly of about 15–30 mW m$^{-2}$ resulting from heat source buried more deeply in the crust by 5 km (as appropriate for the Flinders Ranges) leads to a reduction in bulk strength of a Brace-Goetze lithosphere by a factor of between 2 and 5 (Figure 8a) and an increase in strain rates subject to an imposed load of more than 2 orders of magnitude or more (Figure 8b).

[35] Strictly, equations (4) and (5) only hold in the one-dimensional (1-D) limit where there is no lateral heat flow and the Flinders Ranges are sufficiently narrow that the effective heating of the deep crust and upper mantle beneath the Flinders Ranges will be ameliorated by lateral heat flow. To explore this we use a 2-D numerical model based on Hansen and Nielsen’s [2003] formulation (to which the reader is referred to for a full description) of a finite element algorithm solving for elastoplasticoviscous deformation and transient heat flow for a Brace-Goetze rheology (see Table 1 for summary of rheological properties). Plastic deformation occurs when the pressure-dependent yield strength of the rock is exceeded and simulates fracturing. Viscous deformation follows a temperature, strain rate and rock type dependent Dorn creep power law rheology [Ranalli, 1995]. Buoyancy forces act at density contrast interfaces located at the surface, basement, midcrust, Moho and the base of the lithosphere. Erosion is modeled using a diffusion equation with a source term enabling the transport of sediments to and from the model profile. We model a 500 km wide and 100 km deep domain discretized into a finite element mesh with 2592 triangular elements. The modeled lithosphere profile is initially partitioned into four rheological layers consisting of sediments, upper crust (20 km wet quartz), lower crust (15 km wet feldspar) and lithospheric mantle (65 km dry olivine). The rheological properties of these materials are listed in Table 1 and are dependent on temperature, pressure, composition, and deviatoric stress magnitudes and not given as prior constraints in any element [Hansen and Nielsen, 2003]. Vertical boundaries of the model are axes of symmetry. Deformation is induced by lateral displacement, with no tilt, of the right boundary (Figure 9). Upper and lower thermal boundary conditions are constant surface temperature and constant basal heat flux, respectively.

[34] Our model formulation is motivated by the recognition that the tectonic history of the Flinders Ranges reflects a multistage inversion of a Neoproterozoic rift basin formed on older crust highly enriched in heat producing elements [e.g., Sandiford et al., 1998; Neumann et al., 2000]. In particular, the following phases are relevant to the first-order tectonic history of the Flinders Ranges: (1) Neoproterozoic basin formation (~800–550 Ma) with crustal thinning and sediment deposition, (2) Delamerian inversion (~500–450 Ma), followed by (3) erosion and sediment redistribution to remove Delamerian topography (~450–300 Ma) prior to the Mesozoic and (4) a neotectonic “inversion” associated with the formation/amplification of the present-day topography (~10–0 Ma. In order to reproduce the heat flow anomaly associated with the Flinders Ranges, a zone of high basement heat production is included, as shown in Figure 9:

$$H(x,z) = H_0 \exp \left(\frac{-(x-x_0)^2}{h_z^2}\right) \exp \left(\frac{-(z-z_0)^2}{h_h^2}\right)$$

where z_0 is the depth of the locus of enriched heat production; H_0 is the heat production maximum at the locus of the anomaly, i.e., at $z = z_0$ and $x = x_0$, at the center of the model; and h_z and h_h provide a measure of spread of the heat distribution in the vertical and horizontal directions. The anomaly is superposed on a background heat production field with model parameters chosen to produce a vertically integrated crustal heat flow contribution beneath the basin centre of 120 mW m$^{-2}$, superimposed on a background heat flow contribution of 60 mW m$^{-2}$.

[35] We impose boundary conditions that encapsulate the multiphase inversion history of the Flinders Ranges, condensed into a model run time of a few hundred million
years, rather than the full ~800 Myr history since initial Neoproterozoic rifting. This temporal “short cut” is justified so long as we allow time intervals sufficient for lithospheric-scale thermal equilibration following tectonic activity, for example, Braun and Beaumont [1987], who show that the time required for a thermally and mechanically disturbed piece of continental lithosphere to fully reequilibrate following perturbation is in the order of 60 Myr. We have used time intervals of 60 Myr to separate the thermally discrete tectonic episodes in our model.

[36] The initial model phase simulates formation of the rift succession by extensional displacement of the model’s lateral boundaries at a rate of 3 km Myr\(^{-1}\) for 25 Myr (Figure 10). Velocities are then reduced linearly over 5 Myr until the boundaries become fixed at 30 Myr. Post rift, sag phase, sedimentation continues for a further 60 Myr, when the basin is approximately 9 km deep and 200 km wide (Figure 11b), appropriate to some of the deeper parts of the Neoproterozoic rift succession [Preiss, 1987; Paul et al., 1999]. The 60 Myr period following the cessation of rifting allows thermal reequilibration, and dissipation of all residual strains resulting from extensional stresses. A first phase of inversion, simulating “Delamerian” inversion, is initiated at 90 Myr by imposing a 15% shortening of the sedimentary package, consistent with the estimates for bulk Delamerian shortening of Paul et al. [1999]. The shortening is imposed over a period of 20 Myr as shown in Figure 10 and is followed by a further 60 Myr period of thermal reequilibration. While there are no definitive estimates of the total shortening associated with the neotectonic activity in the northern Flinders Ranges, an estimate can be derived by extrapolating seismogenic strain rates (~0.5 km Myr\(^{-1}\))

Table 1. Finite Element Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Wet Quartz</th>
<th>Wet Feldspar</th>
<th>Dry Olivine</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus</td>
<td>(E, \text{ Pa})</td>
<td>(10^{11})</td>
<td>(10^{11})</td>
<td>(10^{11})</td>
<td>1</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>(\nu)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>Creep parameter</td>
<td>(B, \text{ MPa s}^{1/3})</td>
<td>29.6</td>
<td>14.0</td>
<td>0.0258</td>
<td>2, 3</td>
</tr>
<tr>
<td>Creep parameter</td>
<td>(Q, \text{ KJ mol}^{-1})</td>
<td>160</td>
<td>235</td>
<td>535</td>
<td>2, 3</td>
</tr>
<tr>
<td>Creep parameter</td>
<td>(n)</td>
<td>2.4</td>
<td>3.9</td>
<td>3.5</td>
<td>2, 3</td>
</tr>
<tr>
<td>Angle of internal friction</td>
<td>(\phi)</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>Cohesion</td>
<td>(C, \text{ MPa})</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>1</td>
</tr>
<tr>
<td>High-pressure fracturing</td>
<td>(\rho, \text{ MPa})</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>1</td>
</tr>
<tr>
<td>Duvaut-Lions relaxation time</td>
<td>(\zeta, \text{ years})</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>Density at 0°C</td>
<td>(\rho_0, \text{ kg m}^{-3})</td>
<td>2800</td>
<td>2900</td>
<td>3400</td>
<td>1</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>(k, \text{ W m}^{-1} \text{K}^{-1})</td>
<td>3.0</td>
<td>2.3</td>
<td>4.0</td>
<td>4</td>
</tr>
<tr>
<td>Specific heat</td>
<td>(c, \text{ J kg}^{-1} \text{K}^{-1})</td>
<td>850</td>
<td>900</td>
<td>1000</td>
<td>4</td>
</tr>
<tr>
<td>Heat production rate</td>
<td>(A, \text{ W m}^{-3} \text{K}^{-1})</td>
<td>1.3</td>
<td>0.3</td>
<td>0.01</td>
<td>4</td>
</tr>
<tr>
<td>Thermal expansion coefficient</td>
<td>(\alpha, \text{ K}^{-1})</td>
<td>(3.2 \times 10^{-5})</td>
<td>(3.2 \times 10^{-5})</td>
<td>(3.2 \times 10^{-5})</td>
<td>1</td>
</tr>
</tbody>
</table>

*After Hansen and Nielsen [2003]. The references are 1, Jaeger and Cook [1969]; 2, Ranalli [1995]; 3, Bassi [1991]; 4, Nielsen and Hansen [2000]. In the sediments, \(\rho_0 = 2300 \text{ kg m}^{-3}\), \(k = 2.0 \text{ W m}^{-1} \text{K}^{-1}\), \(A = 1.0 \text{ W m}^{-3} \text{K}^{-1}\), and \(c = 900 \text{ J kg}^{-1} \text{K}^{-1}\). The porosity of sediment decreases with burial according to \(\Phi = \Phi_0 \exp(-z/2 \text{ km})\), where \(\Phi_0\) is surface porosity and \(z\) is maximal burial depth.

Table 2. Flexural Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densities, kg m(^{-3})</td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>2700</td>
</tr>
<tr>
<td>Crust</td>
<td>2900</td>
</tr>
<tr>
<td>Mantle</td>
<td>3200</td>
</tr>
<tr>
<td>Flexural rigidity, N m</td>
<td>(10^{22})</td>
</tr>
<tr>
<td>Kinematic stretching factor</td>
<td>2.0</td>
</tr>
<tr>
<td>Initial crustal thickness, km</td>
<td>40</td>
</tr>
</tbody>
</table>
over the likely period of deformation, assumed to be of the order of 5–10 Myr [Sandiford, 2003]. We impose this in the model by linearly increasing the boundary velocity to 0.5 km Myr\(^{-1}\) over 2 Myr and maintaining this velocity for a further 8 Myr (Figure 10). Following initial stretching and thermal subsidence the model is remeshed as appropriate to the fully restored mantle lithosphere (see Figures 11b and 11c).

Figure 11 shows results for critical steps in the evolution of the model. The thermal weakening effect of the high crustal heat production is clearly effective in localizing the initial phase of stretching (Figure 11a) as well as during subsequent compressive strains (Figures 11c and 11e). During subsequent Delamerian shortening, crustal strains tend to be localized beneath the basin flanks (Figure 11c), in accord with the generalized basin inversion model predictions of Hansen and Nielsen [2002, 2003] and Sandiford [1999]. Following the localization of strains and building of topography during the inversion event, Delamerian topography is eroded and redistributed in the flanking basins. All topography is effectively eroded away, resulting in a flat model surface, after a few tens of millions years of model time. The pulse of neotectonic compression, imposed on the lithospheric structure shown in Figure 11d, again localizes strains within the thermally weakened region underlying the Neoproterozoic basin, particularly beneath the rift flanks. Again topography is built as the package is uplifted while the flanking areas are flexurally downwarped. The marginal troughs progressively deepen and there lateral extent increases with continued neotectonic compression, ultimately producing a regional topographic pattern that closely resembles the long-wavelength pattern observed in the topographically depressed regions now occupied by playa lake systems.

The model results shown in Figure 11 highlight the effectiveness of a basement heat flow anomaly in localizing deformation, through a multistage inversion history spanning many hundreds of millions of years. An implication of this modeling is that the localized active deformation of the Flinders Ranges can be accounted for by the thermal consequences of crustal heat production. In order to be sure of the role the heat flow anomaly plays in the thermal history of the region we have run an identical model with the heat flow anomaly removed. The results of this model substantiate the observation that tectonic localization results from the inclusion of a heat anomaly. With the anomaly removed, deformation is accommodated by bulk pure shear without any localization (since nonlinear effects such as strain softening are not included, only the thermal anomaly introduces localizing effects in the initial phases of the model). Consequently, the surface uniformly subsides during extension and later rises during compression, with no relief development in the modeled domain.

4.2. Role of Lithospheric Flexure

While the model results shown in Figure 11, appealingly account for the localized nature of historical seismicity and, in a broader sense, the distribution of Quaternary faulting in the Flinders Ranges, they do not address the observed gravity pattern. In particular, the weak positive gravity anomaly over the Flinders Ranges and its coincidence with topography at long wavelengths. This geophysical signal suggests that as well as the seismogenic mode of active deformation, there may be a component of lithospheric flexure in the region. Here we explore the likely geophysical response to a purely elastic mode of deformation appropriate to the multiphase inversion history of the Flinders Ranges outlined above.

Lithospheric-scale flexure is a controversial deformation mode that has been invoked by a variety of workers to explain periodic undulatory patterns of gravity and topography in a variety of settings [Cloetingh et al., 1999]. For example, the occurrence of intraplate flexure of the oceanic lithosphere is firmly established in the

Figure 11. Five-step cartoon showing the most important steps in thermomechanical model evolution. Each figure shows strain rate contours and topography. Refer to timeline in Figure 10 for relative timing of each step. (a) Late stage of rifting. (b) Basin immediately prior to Delamerian compression and before remeshing. (c) Late stage of Delamerian compression. (d) Basin just before neotectonic compression. (e) Late stage of neotectonic compression.
Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16
northeastern Indian Ocean [Geller et al., 1983]. In this example, bathymetric anomalies reveal subparallel undulations of the oceanic bed with wavelengths of 100 to 300 km, and amplitudes of up to 1 km. Stephenson and Cloetingh [1991] have argued for lithospheric flexure to explain the unusual gravity pattern in central Australia where gravity highs with amplitude +150 mGal coincide with regions of structural inversion. Highlighting the earlier work of Lambeck [1983], Stephenson and Cloetingh [1991] argued that the N-S trending late Proterozoic to Carboniferous sedimentary basins and intervening basement complexes of central Australia reflect lithospheric flexure in the presence of significant and long-lived horizontal compressional stresses.

To test the role of lithospheric flexure as a mode of deformation responsible for the geophysical signals in the Flinders Ranges, we follow the methodology and model assumptions of Stephenson and Cloetingh [1991], treating the lithosphere as a thin elastic plate with characteristic stiffness, loaded by horizontal tectonic forces and vertical buoyancy forces. Because of prior history related to older tectonic activity, the plate is predeflected. We assume the predeflection can be ascribed to an elastic beam in the uppermost mantle, based on most current views about the vertical strength distribution in the lithosphere [e.g., Brace and Kohlstedt, 1980] (see further discussions by Karner [1986] and Karner et al. [1993]). First-order constraints on the elastic thickness of the Australian lithosphere are provided by long-wavelength coherence studies [Zuber et al., 1989; Simons et al., 2000], with Simons et al. [2000] suggesting that South Australia is characterized by an elastic thickness in the order of 40 km. Given the anomalous heat flow in the vicinity of the Flinders Ranges we anticipate that the elastic thickness is lower than average, and in the calculations below we assume an elastic thickness of 30 km. We simulate the multiphase inversion history of the Flinders Ranges by varying the horizontal and vertical forces applied to the thin elastic plate. The Bouguer gravity response is calculated through the integration of density differences between sediments and crust, as well as crust and mantle along seventy horizontal points at the top of the model. Densities as well as the flexural parameters used in these calculations are listed in Table 2.

The general character of the elastic response to each of the steps in the deformation history of the region is summarized in Figure 12 and briefly outlined below. In the initial phase, basin formation leads to an upward "predeflection" reflecting the shallowing of the upper mantle beneath the thinned crust, and a Bouguer gravity response characterized by a short-wavelength negative anomaly.

Figure 12. Elastic thin plate model with coinciding gravity and topography highs. The thin plate model evolves in 4 phases. Solid line is topography and the dashed line is the gravity signal. (a) Initial basin formed by thinning the crust kinematically and the elastic plate, positioned at Moho level, is deflected upward due to sediment-crust density differences, (b) a topographic high (inversion zone) flanked by marginal depressions results from horizontal compression, (c) redistribution of sediments by erosion and deposition flips the predicted Bouguer anomaly forming a gravity high in the inverted basin, and (d) a second horizontal stress build-up creates topography without significantly affecting the gravity signal.
plane load of 5 tonic, compressive episode (achieved by imposing an in-plane load parallel to the rift flanks (Figure 12c). The final, neotectonic Neoproterozoic basin between two negative anomalies showing a positive anomaly centered above the remnant Delamerian topography, the gravity signal is reversed, indicating that the applied modeled load (5 × 10¹² N m⁻¹) is too high.

5. Discussion

Both geological and geophysical observations in the Flinders Ranges suggest significant ongoing intraplate deformation within the Australian continent of much greater complexity and intensity than is usually accorded to views on contemporary Australian geology. Of particular relevance to understanding this deformation are the distribution of seismicity, the Quaternary faulting record, the pattern of Bouguer gravity, and the architecture of the surrounding flexural basins. These features provide important insights into the modes of active deformation responsible for ongoing seismicity and relief generation in this region. The weak positive Bouguer gravity signal and the unusual flexural basin architecture imply a significant role of low-amplitude lithospheric flexure, while the distribution of seismicity and record of ongoing faulting imply seismogenic strain accumulation at low, yet significant rates (∼10⁻¹⁶ s⁻¹). While lithospheric flexure is usually related to an elastic mode of deformation, it is more appropriately ascribed to deformation of lithosphere characterized by a plastic yield stress and significant strength contrasts [e.g., Gerbault, 2000]. In the following discussion we review some of the important insights provided by our numerical modeling of these deformation modes, which we refer to as the “flexure mode” and the “seismogenic mode,” respectively, while recognizing that in nature they form part of a continuous response spectrum [e.g., Gerbault, 2000].

An important result of our modeling relates to the spatial pattern of topography. In each mode, the generation of relief is intimately linked to the prior tectonic history and the inherited geochemical make up of the crust. We have shown how the amplification of instabilities in the flexure mode can be related to the distribution of embedded
membrane stresses which provide a predeflection consequence upon prior history. The existence of predeflection related to earlier basin formation restricts the positive topographic relief to the axis of the former basin, while a two-stage inversion history, and subsequent removal of topography is a crucial factor leading to the positive Bouguer gravity anomaly coincident with positive relief. In the seismogenic mode, localization of lithospheric failure can be attributed to lateral variations in lithospheric strength imposed by variations in the thermal property structure of the crust related to (1) unusually elevated abundances of heat producing elements and (2) the redistribution of the heat producing elements during prior tectonic structuring, particularly during basin formation.

[46] While the accumulation of significant seismogenic strain in the presence of long-wavelength lithospheric-scale flexing has been documented from an oceanic setting in the central Indian Ocean [Weissel et al., 1980], it remains controversial in the continents [see Cloetingh et al., 1999]. Such flexure requires a stratified system with significant strength contrasts (e.g., effective viscosity ratios of 10^3 [Gerbault et al., 2003]). In the flexure mode, instabilities typically amplify at wavelengths ~ 5 times the thickness of the "stiff" layer [Gerbault et al., 2003]. For the Flinders Ranges, the wavelength of flexure implied by the distribution of the playa lakes is ~ 150 km, implying a layer thickness of around 30 km, close to the crustal thickness in this region. Assuming that dissipation occurs by a viscous response beneath the stiff layer, then it seems probable that the thermal structure of the upper mantle beneath the Flinders Ranges may have played a crucial role in facilitating this mode of deformation, by limiting the strength of the upper mantle.

[47] Together with previous plate-scale modeling studies [Reynolds et al., 2002; Sandiford et al., 2004, 2005], our analysis provides further constraints on the question of the stress magnitudes responsible for active deformation in the Flinders Ranges. Numerical modeling of the intraplate stress field by Reynolds et al. [2002] and Sandiford et al. [2004] predicted S_{fmax} magnitudes ~ 25 MPa (averaged over a 100 km thick lithosphere) in the vicinity of the Flinders Ranges. If supported by a ~ 30 km thick stiff layer, the effective stress magnitudes would be ~ 75 MPa. Such stress magnitudes are significantly lower than most workers suggest are needed for the amplification of lithospheric flexural instabilities [e.g., Gerbault, 2000], although within the range suggested by Martinod and Molnar [1995]. Moreover, in the central Indian Ocean (where consensus is that flexure is occurring) the Sandiford et al. [2005] S_{fmax} magnitudes are only ~ 40 MPa averaged over a 100 km thick lithosphere. Here the characteristic flexural wavelength of about 200 km implies layer thickness of 40 km with effective stress magnitudes 100 MPa, only slightly greater than we predict for the Flinders Ranges. These observations also highlight the fact that both regions (the Flinders Ranges and central Indian Ocean) form part of the same fast moving tectonic plate, which is in a state of significant compression by virtue of the way driving torques are balanced by plate boundary collisions [e.g., Coblenz et al., 1995]. Noting the different inferred wavelengths of the flexural instabilities in these two regions, the stress magnitudes within the stiffest layers are probably not significantly different.

[48] On the basis of regional geological constraints pertaining to timing of neotectonic activity across southeastern Australia, Sandiford et al. [2004] have argued that the current tectonic regime is essentially a late Neogene phenomenon, reflecting changes in the Pacific-Australian plate coupling at around 10–6 Ma. An older inception of the basins surrounding the Flinders Ranges is suggested by early to mid-Neogene sediments with thicknesses of up to ~ 100 m in these basins [e.g., Alley and Lindsay, 1995]. We would expect that the flexure mode might generate relief in the vicinity of the Flinders Ranges, in response to any significant regional compression in the plate. In this respect, the stress regime within Australia is believed to have been dominated by compression from the mid-Eocene when fast spreading commenced in the Indian Ocean, and Australia commenced its rapid (6–7 cm yr$^{-1}$) northward drift [e.g., Sandiford et al., 1995]. Thus it seems quite conceivable that the flexure mode is associated with a staged relief generation through much of the Cenozoic. During the Neogene, and particularly over the last 10 Myr, stress levels in the Indo-Australian plate have increased due to increased plate boundary forcing. Our paradigm of the lithosphere in the vicinity of the Flinders Ranges initially responding to the new stress regime by broad flexure, fits with the work of Cloetingh et al. [1999], who argue that lithospheric “flexure” is a standard response to recently induced compressional stress fields. They also suggest that following an initial flexural response, deformation becomes localized leading to localized failure and, once strains are large enough, orogeny. Such a sequence of deformation resembles very closely the recent tectonic history of the Flinders Ranges, although at strain rates of $\sim 10^{-10}$ s$^{-1}$ orogeny is still many millions of years into the future!

[49] In summary, we propose that the following sequence of deformation has contributed to building the present-day relief of the Flinders Ranges. Following the establishment of the current compressive Indo-Australian stress field at ~ 10–6 Ma, the lithosphere of the Flinders Ranges region responded by initiating long-wavelength (~ 150 km) flexing instabilities, localized by weaknesses and membrane stresses inherited from prior tectonic processes. This broad “flexing” produced a shallow, topographic high coincident with the current axis of the ranges, with flanking basins establishing their characteristic form floored by preneotectonic material which slopes away from the axis of the ranges. The onset of failure in the late Neogene reflects increases in stress levels forced principally by changes in the coupling between the Pacific and Australian plates. At this time, seismogenic strain began to accumulate in the upper crust, with localized failure reflecting spatial variations in lithospheric strength controlled by its thermal structure.

[50] Acknowledgments. Wolfgang Preiss is thanked for drawing our attention to the Burra Fault locality. Careful and insightful reviews by Jean-Phillipe Avouac and several anonymous reviewers are greatly appreciated.
Williams, G. E. (1973), Late Quaternary piedmont sedimentation, soil formation and paleoclimates in arid South Australia, Z. Geomorph., 17, 102–125.

J. Célérier, Research School of Earth Sciences, Australian National University, Mills Road, Canberra 0200, Australia. (julien.celerier@anu.edu.au)
D. L. Hansen, Department of Earth Sciences, University of Aarhus, Finlandsгазe 6-8, DK-8200 Aarhus N, Denmark.
M. Quigley and M. Sandiford, School of Earth Sciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.
Figure 1. Distribution of Australian seismicity ($M > 3$). Earthquake epicenter data are courtesy of Geoscience Australia. Magnitude measures are based on local magnitudes (M_L) for $M < 5.5$ and surface magnitude (M_s) for $M > 5.5$.
Figure 3. Seismicity pattern of South Australia showing the upland system of the Flinders and Mount Lofty ranges. The Mount Lofty Ranges refer to the southern part of this upland system (south of 34°S), while the Flinders Ranges refer to region north of about 33°30S. Note the anomalously low depressions flanking the ranges (see Figure 4). Around the Flinders Ranges these depressions form internally draining playa lake systems. Earthquake epicenter data are courtesy of Geoscience Australia. Rectangular region shows the region of seismicity used to define Gutenberg-Richter characteristics in Figure 2. Magnitude measures are based on local magnitudes (M_L) for $M < 5.5$ and surface magnitude (M_s) for $M > 5.5$.